Advanced Digital-SCAL Measurements of Gas Trapped in Sandstone

Author:

Gao Ying, ,Sorop Tibi,Brussee Niels,Van der Linde Hilbert,Coorn Ab,Appel Matthias,Berg Steffen, , , , , ,

Abstract

Trapped gas saturation (Sgr) plays an important role in subsurface engineering, such as carbon capture and storage, H2 storage efficiency as well as the production of natural gas. Unfortunately, Sgr is notoriously difficult to measure in the laboratory or field. The conventional method of measurement—low-rate unsteady-state coreflooding—is often impacted by gas dissolution effects, resulting in large uncertainties of the measured Sgr. Moreover, it is not understood why this effect occurs, even for brines carefully pre-equilibrated with gas. To address this question, we used high-resolution X-ray computed tomography (micro-CT) imaging techniques to directly visualize the pore-scale processes during gas trapping. Consistent with previous studies, we find that for pre-equilibrated brine, the remaining gas saturation continually decreased with more (pre-equilibrated) brine injected and even after the brine injection was stopped, resulting in very low Sgr values (possibly even zero) at the pore-scale level. Furthermore, we were able to clearly observe the initial trapping of gas by the snap-off effect, followed by a further shrinkage of the gas clusters that had no connected pathway to the outside. Our experimental insights suggest that the effect is related to the effective phase behavior of gas inside the porous medium, which due to the geometric confinement, could be different from the phase behavior of bulk fluids. The underlying mechanism is likely linked to ripening dynamics, which involves a coupling between phase equilibrium and dissolution/partitioning of components, diffusive transport, and capillarity in the geometric confinement of the pore space.

Publisher

Society of Petrophysicists and Well Log Analysts (SPWLA)

Subject

Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3