Predictive Analytics in Genetic Engineering as an Optimization Problem

Author:

Emmanuel Okewu1,Bukola Okewu Kehinde2

Affiliation:

1. Centre for Information Technology and Systems, University of Lagos, Nigeria

2. Department of Plant Science, Federal University of Technology, Lagos, Nigeria

Abstract

In genetic engineering, developing a breed with a desired trait is a search and optimization problem that sometimes requires many generations of field and laboratory experiments for an optimal solution to be found. The nature of the problem requires that a stochastic optimization algorithm be applied in the metaheuristic search rather than using a deterministic or mathematical approach. In the search for drought-tolerant cowpea, this study applied a genetic algorithm as a predictive analytics tool in the genetic engineering of three native cowpea landraces (Dan muzakkari, Gidigiwa, and Dan mesera) selected from Northern Nigeria (specifically from Kontagora in Niger State of Nigeria). The three cowpea species were subjected to mutagenic treatments using gamma irradiation and Ethyl Methane Sulphonate (EMS). Doses applied include 200, 400, 600, and 800 Gray of gamma irradiation and 0.372% v/v of EMS. Both treated and untreated cowpea landraces were planted and observed. Mutation-induced breeding aims to deepen the drought-tolerant trait of the cowpea mutants to survive conditions in drought-prone Northern Nigeria. The statistical analysis of the agro-morphological and yield parameters of the first mutant generation (M1 generation) indicates that mutagenic treatments have a positive impact on both the yield and the survival of the three landraces as all the treated landraces yielded better than the control, particularly the treatments combination of 600gray and 372% v/v of EMS. Also, the predictive outcomes of the computational simulation that was implemented in Python programming indicate that these local cultivars are developing drought-tolerant genetic variability. For the three computational experiments, the stochastic optimizer (genetic algorithm) converged at the 9412th, 9717th, and 14338th generations respectively. Such predictive analytics information is useful for guiding decision-making by researchers and breeders in the crop improvement program.

Publisher

INTI International University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3