Towards Neural Routing with Verified Bounds on Performance

Author:

Buzhinsky Igor Petrovich1ORCID,Shalyto Anatoly Abramovich2ORCID

Affiliation:

1. Aalto University

2. ITMO University

Abstract

When data-driven algorithms, especially the ones based on deep neural networks (DNNs), replace classical ones, their superior performance often comes with difficulty in their analysis. On the way to compensate for this drawback, formal verification techniques, which can provide reliable guarantees on program behavior, were developed for DNNs. These techniques, however, usually consider DNNs alone, excluding real-world environments in which they operate, and the applicability of techniques that do account for such environments is often limited. In this work, we consider the problem of formally verifying a neural controller for the routing problem in a conveyor network. Unlike in known problem statements, our DNNs are executed in a distributed context, and the performance of the routing algorithm, which we measure as the mean delivery time, depends on multiple executions of these DNNs. Under several assumptions, we reduce the problem to a number of DNN output reachability problems, which can be solved with existing tools. Our experiments indicate that sound-and-complete formal verification in such cases is feasible, although it is notably slower than the gradient-based search of adversarial examples.The paper is structured as follows. Section 1 introduces basic concepts. Then, Section 2 introduces the routing problem and DQN-Routing, the DNN-based algorithm that solves it. Section 3 proposes the contribution of this paper: a novel sound and complete approach to formally check an upper bound on the mean delivery time of DNN-based routing. This approach is experimentally evaluated in Section 4. The paper is concluded with some discussion of the results and outline of possible future work.

Publisher

P.G. Demidov Yaroslavl State University

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3