UAV detection using neural networks

Author:

Averina Maria D.1ORCID,Levanova Olga1ORCID,Grushevskaya Darya V.1ORCID,Kukharev Kirill A.1ORCID,Murin Dmitriy M.1ORCID,Kalinin Maksim A.2ORCID

Affiliation:

1. P.G. Demidov Yaroslavl State University

2. National Research University Higher School of Economics

Abstract

The availability of unmanned aerial vehicles (UAVs) has led to a significant increase in the number of offenses involving their use. This makes the development of UAV detection systems relevant. Solutions based on deep neural networks show the best results in detecting UAVs on video. This article presents a study of various neural network detectors and focuses on identifying objects as small as possible, up to the size of $4\times4$ and even $3\times3$ pixels. The work investigates architectures SSD (VGG16) and YOLOv3 and it's modifications. Precision and recall metrics are calculated separately for different intervals of the object areas. The best result have been shown by YOLOv3 model with bbox parameters chosen as the result of object sizes clustering. Small ($3\times3$ px) drones have been successfully identified with 76% precision and a very small recall of 26%. For objects between 10 and 20 pixels in area, the recall is 64% with an accuracy of 75%. For objects with an area more than 20px the recall is about 90%, the precision is 89%, and the F1 score is 90%. These results show that it is possible to recognize even $4\times4$ pixel drones, which can be used in video surveillance systems.

Publisher

P.G. Demidov Yaroslavl State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3