Fast computation of cyclic convolutions and their applications in code-based asymmetric encryption schemes

Author:

Sushko Andrey N.1ORCID,Steinberg Boris Y.1ORCID,Vedenev Kirill V.1ORCID,Glukhikh Anton A.1ORCID,Kosolapov Yury V.1ORCID

Affiliation:

1. Southern Federal University

Abstract

The development of fast algorithms for key generation, encryption and decryption not only increases the efficiency of related operations. Such fast algorithms, for example, for asymmetric cryptosystems on quasi-cyclic codes, make it possible to experimentally study the dependence of decoding failure rate on code parameters for small security levels and to extrapolate these results to large values of security levels. In this article, we explore efficient cyclic convolution algorithms, specifically designed, among other things, for use in encoding and decoding algorithms for quasi-cyclic LDPC and MDPC codes. Corresponding convolutions operate on binary vectors, which can be either sparse or dense. The proposed algorithms achieve high speed by compactly storing sparse vectors, using hardware-supported XOR instructions, and replacing modulo operations with specialized loop transformations. These fast algorithms have potential applications not only in cryptography, but also in other areas where convolutions are used.

Publisher

P.G. Demidov Yaroslavl State University

Subject

General Medicine

Reference16 articles.

1. T. Holton, Digital signal processing: Principles and applications. Cambridge University Press, 2021.

2. D. S. Taubman, M. W. Marcellin, and M. Rabbani, “JPEG2000: Image compression fundamentals, standards and practice,” Journal of Electronic Imaging, vol. 11, no. 2, pp. 286–287, 2002.

3. V. Holub, J. Fridrich, and T. Denemark, “Universal distortion function for steganography in an arbitrary domain,” EURASIP Journal on Information Security, vol. 2014, no. 1, p. 1, 2014.

4. Intel, “Intel® oneAPI Deep Neural Network Library.” 2023, Accessed: 07, 2023. [Online]. Available: https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-dnn-part-1-library-overview-and-installation.html.

5. N. R. Council and others, Getting up to speed: The future of supercomputing. National Academies Press, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3