EXPERT SYSTEM FOR DIAGNOSIS OF MALARIA AND TYPHOID

Author:

Maidabara Abba Hamman,Ahmadu Asabe Sandra,Malgwi Yusuf Musa,Ibrahim Douglas

Abstract

An expert system is a computer program designed to solve problems in a domain that has human expertise. The knowledge built into the system is usually obtained from experts in the field. Based on this knowledge, an expert system can replicate the thinking process of the human experts and make logical deductions accordingly. Malaria and Typhoid are major health challenge in our society today (Nigeria), its symptoms can lead to other illness which include prolonged fever, fatigue, headaches, nausea, abdominal pain and constipation or diarrhea. People in endemic areas are at risk of contracting both infections concurrently. According to the world malaria report 2011, there were about 216 million cases of malaria and typhoid and estimated 655,000 deaths in 2010. (WHO report, 2011). The main challenging issue confronting the healthcare is lack of quality of service at minimal cost implying from diagnosing to predicting patients correctly. This issue can sometimes lead to an unfortunate clinical decision that can result in devastating consequences that are unacceptable. Although many studies were carried out by different researchers in the medical domain using various data techniques. In this research work, an efficient expert system that diagnoses patients with malaria and typhoid was developed. A secondary data was collected from university of Maiduguri teaching hospital for the period of four years which ranges from 2017 to 2020. The work explored the potential benefits of proposing a new model for prediction and diagnosis of malaria and typhoid using symptoms. The model adopted the Naive bayes and was implemented using the python. The system diagnoses a patient in real time (within 30 minutes) without necessarily visiting the laboratory for a test. Three algorithms were used these are, Support vector machine, Artificial neural network and Naïve bayes. From our finding, it is observed that Naïve bayes and support vector machine give the best result which is 100% in terms of accuracy of diagnosis. Keywords: Diagnosis, Prediction, Expert System, Typhoid, Malaria

Publisher

Fair East Publishers

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3