Intelligent CBR system for automation of the search process for efficient methods for cleaning exhaust gases

Author:

Bugaieva Liudmyla,Beznosyk Yurii

Abstract

In this study, the objective is to develop an intelligent system for making decisions on the choice of methods for cleaning exhaust gases from sulfur and nitrogen oxides using the Case-Based Reasoning- (CBR). The task of automating the selection of effective methods for cleaning waste gases is urgent and meets the paradigm of sustainable development. A database on methods for cleaning exhaust gases from nitrogen and sulfur oxides was created. The potential use of intelligent inference on precedents from the database to select the most appropriate cleaning method for new emission stream data is considered. The work of the CBR method is represented as a life cycle, which has four main stages: Retrieving, Reusing, Revising and Retaining. The following characteristics of precedents were considered: degree of purification, initial concentration, temperature, presence of impurities, obtained product, material consumption, and energy consumption. All of these characteristics (in CBR attributes), except for the fourth and fifth, are given by numerical values with respective units of measurement and can be easily normalized. The presence of impurities and the product are categorical attributes with a certain set of values (classes). One of the main problems in CBR was solved: the problem of choosing the type of indexes. A set of all input characteristics of the precedent as indices is suggested to be used for the proposed decision support system (DSS) for methods of cleaning gas emissions. The first two phases of the CBR lifecycle use the k-nearest neighbor method to Retrieving and Reusing. The Euclidean metric is used to estimate the distances between precedents in the developed system. During the third and fourth phases of CBR, the intervention of the decision maker is provided. The process finishes with the adoption of the found solution and the possible storage of this solution in the base of use cases. An intelligent decision-making system has been developed for the selection of methods for cleaning exhaust gases from sulfur and nitrogen oxides based on the method of inference by precedents (CBR), which has been done for the first time for such tasks of chemical technology.

Publisher

Kyiv Politechnic Institute

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3