Convolutional Neural Network to Predict the Penetration Coefficient of Metamaterials Based on Their Structure and Composition

Author:

Zoziuk Maksym Olehovych1ORCID,Yurikov Oleksii Ivanovych1ORCID

Affiliation:

1. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine

Abstract

The work is devoted to the development of a technique for predicting the coefficient passage of metamaterials based on topological structure and chemical composition with the use of machine learning techniques, namely artificial neural networks using convolution. In modern scientific and technical research, the methods of machine learning, namely: convolutional neural networks, occupy the most rapidly researched method in the design tasks of metamaterials and their properties. The advantage of this technique is the ease of implementation, the availability of data for this approach, the speed of calculations compared to the exact methods of predicting properties and topological structure based on physical laws. Of course, artificial neural networks are a rather complex process that has its own drawbacks – the need for a large amount of data, the relative complexity of optimization, and the complexity of problem formulation. With the development of machine learning technologies, these disadvantages are more and more eliminated, and therefore their use becomes more accessible. A large amount of information about metamaterials from relevant sources was used, namely the topology, chemical composition and measurement conditions of metamaterials. Software environments were used for writing digital code and building 3D objects of metamaterials with defined properties. An algorithm for predicting the transmission coefficient based on the structure, chemical composition of metamaterials based on a convolutional neural network using experimental data of laboratory metamaterials has been developed. An algorithm for saving information about the chemical composition of metamaterials has been developed. It is shown that using information about the electromagnetic properties of chemical elements, it is possible to predict the transmission coefficient of metamaterials. The process of presenting the coefficient of passage of metamaterials in a form convenient for training a convolutional neural network is described. Two methods were used to compare the effectiveness of both methods. It is shown that the method of representing experimental characteristics in the form of polynomial coefficients is faster, but not suitable for solving problems of predicting the characteristics of metamaterials. Data augmentation is shown to be the most effective method for improving forecasting results. Nevertheless, performance improvement methods based on architecture changes and hyperparameter changes should be continually evaluated and used whenever possible.

Publisher

Igor Sikorsky Kyiv Polytechnic Institute

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3