Biological resistance of thermally modified Gmelina arborea wood

Author:

Minkah Maxidite,Afrifah Kojo Agyapong,Antwi-Boasiako Charles,Soares da Silva Ana Paula,Rocha de Medeiros Jaqueline,Paes Juarez,Batista Djeison,Brischke Christian,Militz Holger

Abstract

Thermal modification of wood is an environmentally friendly method to improve wood durability, mainly against microorganisms. By employing a process similar to the ThermoWood®, various Gmelina arborea (gamhar) wood specimens were thermally modified at 180 °C, 200 °C, and 220 °C for 3 hours. The effects of the thermal modification process on the resistance to decay by rot-fungi, and attack by subterranean, arboreal, and dry-wood termites were determined. Generally, the thermal modification improved the resistance of Gmelina arborea (gamhar) to decay by Trametes versicolor with increasing process temperature. However, the effect of the process was null on the resistance to biodeterioration by the brown-rot fungus Coniophora puteana and the dry-wood termites Cryptotermes brevis. Even so, the visual damage caused by Cryptotermes brevis was slight. Untreated and thermally modified woods recorded higher resistance to Coniophora puteana than Trametes versicolor. Mass loss caused by Nasutitermes corniger also decreased with increasing thermal modification temperature. According to the visual damage rating values, the attack by Nasutitermes corniger was slight. However, the thermal modification inversely impacted Gmelina arborea (gamhar) attack by Macrotermes sp., as its resistance in the field to the termites decreased with increasing modification temperature. Thus, the thermal modification process contributed to improving the decay resistance of the modified wood to white-rot fungus Trametes versicolor and attack by the arboreal termites Nasutitermes corniger exposed indoors. On the other hand, thermally modified Gmelina arborea (gamhar) wood was very susceptible to Macrotermes sp. in the field. This work would provide a reliable reference document to guide wood industry stakeholders in assessing the performance of untreated and thermally modified Gmelina arborea (gamhar) wood in situations exposed to fungi and termite species adopted.

Publisher

Universidad del Bio Bio

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3