Music-Induced Emotion Recognition Based on Feature Reduction Using PCA From EEG Signals

Author:

Khabiri Hamid,Naseh Talebi Mohammad,Kamran Mehdi Fakhimi,Akbari Shadi,Zarrin Farzaneh,Mohandesi Fatemeh

Abstract

Purpose: Listening to music has a great impact on people's emotions and would change brain activity. In other words, music-induced emotions are trackable in electrical brain activities. Therefore, Electroencephalography can be a suitable tool to detect these induced emotions. The present study attempted to use electroencephalography in to recognize four types of emotions (happy, relaxing, stressful, and sad) induced in response to listening to music excerpts, using three classifiers. Materials and Methods: In this empirical study, electroencephalography signals were collected from 20 participants, as they were listening to pieces of selected music. The collected data were then pre-processed, and 28 linear and nonlinear features for recognizing the aforementioned emotions were extracted. Feature-space components were then reduced through a principal components analysis. Finally, the first ten components of feature-space were used as input for three classifiers based on Neural Network (NN), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) algorithms to identify the induced emotions. Results: The outputs showed that the suggested method was well capable of emotion recognition.  Evaluating the music excerpts, on the self-assessment manikin scale, demonstrated that the labeling of the music tracks was accurate. The highest accuracy found among NN, KNN, and SVM algorithms were %84, %84, and %89 for happy emotions, respectively. Conclusion: The findings of this study provide useful insights into emotion classification and brain behavior related to induced emotion extraction. Happiness was the most recognizable emotion and the support vector machine had the highest performance among the classifiers. In the end, the outcomes of the proposed method demonstrate that this system is better than the previous research in EEG-based emotion recognition.

Publisher

Knowledge E DMCC

Subject

Medical Laboratory Technology,Biomedical Engineering,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3