Exosomes from Adipose Tissue-derived Mesenchymal Stem Cells Induce Regulatory T Cells in COVID‐19 Patients

Author:

Motallebnezhad Morteza,Hazrati Ali,Gouvarchin Ghaleh Hadi Esmaeili,Jonaidi-Jafari Nematollah,Abbaspour-Aghdam Sanaz,Malekpour Kosar,Yousefi Mehdi,Kafil Hossein Samadi,Jadidi-Niaragh Farhad,Roshangar Leila,Valizadeh Hamed,Izadi Morteza,Ahmadi Majid

Abstract

An imbalance between regulatory T (Treg) and T-helper (Th)-17 cells has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) exert immunomodulatory properties through secreting exosomes. This study aimed to assess the effect of MSC-derived exosomes (MSC-Exo) on the differentiation of peripheral blood mononuclear cells (PBMCs) into  Tregs from patients with COVID-19. Exosomes were isolated from adipose tissue–derived MSCs. PBMCs were separated from the whole blood of COVID-19 patients (n=20). Treg frequency was assessed before and 48 hours after treatment of PBMCs with MSC-Exo using flow cytometry. Expression of FOXP3 and cytokine genes, and the concentration of cytokines associated with Tregs, were assessed before and after treatment with MSC-Exo. The frequency of CD4+CD25+CD127-  Tregs was significantly higher after treating PBMCs with MSC-Exo (6.695±2.528) compared to before treatment (4.981±2.068). The expressions of transforming growth factor (TGF)-β1, interleukin (IL)-10, and FOXP3 were significantly upregulated in MSC-Exo–treated PBMCs. The concentration of IL‐10 increased significantly after treatment (994.7±543.9 pg/mL) of PBMCs with MSC-Exo compared with before treatment (563.5±408.6 pg/mL). The concentration of TGF-β was significantly higher in the supernatant of PBMCs after treatment with MSC-Exo (477.0±391.1 pg/mL) than PBMCs before treatment (257.7±226.3 pg/mL). MSC-Exo has the potential to raise anti-inflammatory responses by induction of  Tregs, potentiating its therapeutic effects in COVID-19.

Publisher

Knowledge E DMCC

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3