Association of rs3135500 and rs3135499 Polymorphisms in the MicroRNAbinding Site of Nucleotide-binding Oligomerization Domain 2 (NOD2) Gene with Susceptibility to Rheumatoid Arthritis

Author:

Ehtesham Naeim,Alani Behrang,Mortazavi Deniz,Azhdari Sara,Kenarangi Taiebe,Esmaeilzadeh Emran,Pakzad Bahram

Abstract

The nucleotide-binding oligomerization domain 2 (NOD2) is the key regulator of inflammatory responses and has been involved in the pathogenesis of rheumatoid arthritis (RA). Laboratory and in silico evaluations have demonstrated that some polymorphisms in 3ˊUTR of NOD2 gene could influence the secondary structure of this region and similarly thermodynamic features of hybridization site and finally deregulate the expression of NOD2. In the current study, for the first time, we evaluated the possible association between single nucleotide polymorphisms (SNPs) rs3135500 and rs3135499 in the NOD2 gene with RA risk in the Iranian population. One hundred and fifteen patients with RA and 120 healthy subjects were recruited in this case-control study. Genotyping of rs3135500 and rs3135499 polymorphisms were accomplished using the real‑time polymerase chain reaction high resolution melting (HRM) method. We found a substantial association of AA and AG genotypes in rs3135500 with the risk of RA (AA vs GG; OR=5.547; 95%CI [2.564-11.999]; p<0.001 and AG vs GG; OR=2.179; 95%CI [1.145-4.147]; p=0.017). Moreover, in the patient group, there was a significant relationship between the increased concentration of erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) with rs3135500 (A allele) (p<0.05). However, there were no important associations between rs3135499 with the risk of RA (p>0.05). However, we found a noteworthy association of the C allele in rs3135499 with an increased level of CRP in patients (p>0.05). Our findings propose a considerable association between NOD2 polymorphisms with increased risk of RA and disease activity.

Publisher

Knowledge E

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3