Photodynamic Therapy as A New Technology for Inactivation of Coronavirus Disease (COVID-19)

Author:

Mahmoudi Hassan

Abstract

Purpose: Coronavirus Disease (COVID-19) could be an emerging disease with a severe acute respiratory infection, and its epidemiology and unique medicinal properties are perpetually increasing. Regarding the lack of COVID-19 controls, this needs current technical events to worsen and treat. Antiviral Photodynamic Therapy (aPDT) could also be effective in reducing and inhibiting the coronavirus. aPDT with various photosensitizers is a very favorable procedure to manage viral infections. Materials and Methods: A total of 37 articles related to the publication of this review manuscript were mentioned. Several scientific databases such as Scopus, PubMed, Web of Science (ISI), and Google Scholar have checked the key phrases of COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), photodynamic therapy, and antiviral photodynamic therapy. All 50 main studies were found, and 37 related studies were deemed suitable for this study after review. Results: Studies have shown that aPDT with different photosensitizers can be used to treat viral lung complications caused by infectious pathogens such as Middle East Respiratory Syndrome (MERS), SARS-CoV-2, and influenza. Recent studies have shown that aPDT-mediated Methylene Blue (MB) can help control and eradicate coronavirus. In general, more research is needed to use antiviral photodynamic therapy to control COVID-19. Conclusion: Regarding the lack of treatment for COVID-19, MB-mediated aPDT can help reduce the impact of COVID-19. More evidence is needed to support aPDT as a treatment (SARS-CoV-2).

Publisher

Knowledge E

Subject

Medical Laboratory Technology,Biomedical Engineering,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Antibiotics Used in COVID-19 Patients in West of Iran: A Descriptive Study;The Open Microbiology Journal;2023-10-23

2. Multivariate time series analysis on variables that influence pandemic expansion;2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE);2022-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3