Effects of Topical Ozone Application on Outcomes after Accelerated Corneal Collagen Cross-linking: An Experimental Study

Author:

Sanal Dogan AysunORCID,Gurda Canan,Caliskan Sinan,Onder Evrim,Kaymaz Figen,Bilgic Elif

Abstract

Purpose: Ozone is a trioxygen molecule that spontaneously degrades into oxygen and oxygen free radicals. This study was designed to assess the effects of topical ozone application on outcomes after corneal collagen cross-linking (CXL). Methods: Enucleated fresh cadaver yearling sheep eyes (n = 28) were divided into five groups: control (C, n = 6), sham (S, n = 6), ozone only (Z, n = 6), CXL only (X, n = 5), and Ozone + CXL (ZX, n = 5). In all groups, except C, the epithelial layer was removed. In group Z, 20 μg/mL liquid ozone was topically applied. In group X, CXL was performed in the accelerated pulse mode. In group ZX, both CXL and ozone were applied. Post-interventional oxygen levels were determined and corneal confocal microscopy and optical coherence tomography were performed. Corneas were evaluated using light and electron microscopy. Results: Pre-interventional central corneal thickness (CCT) was highest in the control group and considerably similar in the remaining groups (P = 0.006). Pre- and post-interventional CCT were significantly different in the ozonated groups (Z and ZX) (P = 0.028; P = 0.043). Demarcation line depths were similar in groups Z, X, and ZX (P = 0.343). Increased stromal tissue reflectivity was observed in groups Z, X, and ZX. Oxygen levels were higher in the ozonated groups (Z and ZX) (P = 0.006), and caspase activity was higher in the CXL groups (X and ZX) (P = 0.028) as compared to the other groups. Group ZX showed tighter, more regular, and parallel fibrils. Conclusion: Ozone increases corneal stromal oxygenation which can probably augment the effect of CXL. Future studies should investigate the safety and feasibility of ozone application during CXL.

Publisher

Knowledge E

Subject

Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3