Development of Dispersive Liquid-Liquid Microextraction Procedure for Trace Determination of Malathion Pesticide in Urine Samples

Author:

RAMIN Maryam,KHADEM Monireh,OMIDI Fariborz,POURHOSEIN Mehran,GOLBABAEI Farideh,SHAHTAHERI Seyed Jamaleddin

Abstract

Background: Measurement of pesticides in biological matrices is become a serious challenge for researches because of their very low concentration in different matrices. The aim of this study was to develop a new sample preparation method with high accuracy and validity, simplicity and short retention time for determination of malathion. Methods: Dispersive liquid-liquid micro-extraction (DLLME) technique coupled with high-performance liquid chromatography equipped with ultraviolet detector (HPLC-UV) developed for trace extraction and determination of malathion pesticide in human urine samples. This study was done in 2017 at Tehran University of Medical Sciences, Tehran, Iran. One variable at a time (OVAT) method was used to optimize parameters affecting the malathion extraction. Different parameters such as extraction solvent, disperser solvent, and volume of the extraction solvent, volume of the disperser solvent, centrifugation time and speed, salt addition, and sample pH were studied and optimized. Results: Under the optimized conditions, the limit of detection and enrichment factor of the method were 0.5 µg L-1 and 200, respectively. The calibration curve was linear in the concentration range of 2-250 µg L-1 . The relative standard deviation for six replicate experiments at 200 µg L-1 concentration was less than 3%. The relative recoveries of spiked urine samples were 96.3%, 101.7% and 97.3% at three different concentration levels of 50, 200 and 1000 µg L-1 , respectively. Conclusion: DLLME procedure was successfully developed for the extraction of malathion from human urine samples. Compared to other extraction techniques, the proposed procedure had some advantages such as shorter extraction time, better reproducibility, and higher enrichment factor.  

Publisher

Knowledge E

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3