Marketing Mix Modeling of Traffic to the Store Under the Covid-19 Crisis

Author:

Chornous GalynaORCID,Fareniuk YanaORCID

Abstract

The paper contains the results of marketing mix modeling for Ukrainian retail in conditions of the COVID-19 crisis. The main goals of the research are modeling the level of traffic to the store based on regression analysis and forming appropriate recommendations for media strategy. Estimating the influence of media on business KPI makes a basis for ROI calculations and optimization of budget allocation between communication channels by periods, formats, and optimization of media pressure. Models for offline and online traffic were constructed based on weekly data for 2018-2021 and since 2020 there is a strong impact of COVID-19 on traffic and media response. In 2020 there was a significant drop in offline traffic due to the lockdown, but also there was deferred demand, which was compensating for a part of the traffic. The results show that TV is the main driver for offline traffic and digital - for online, but there are also significant impacts of TV and digital on online and offline traffic, respectively. During the lockdown, the mobility of consumers dropped, that is, a decrease in response from Out of Home advertising; therefore, we need to compensate for this by higher activity in other media channels. Scenario forecasting of different media mix helps to select the most efficient strategy taking into account memory decay of advertising, period of activity, and weekly weights. Marketing mix modeling is an effective tool for business management, as it generates opportunities to improve ROI by more than 15% and ensures the achievement of business goals in the most efficient way. Keywords: marketing mix modeling, COVID-19, ROI, regression analysis, retail, traffic

Publisher

Knowledge E DMCC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3