Abstract
<p class="TTPKeywords">We have performed DFT calculations of electronic structure, optical properties and photocatalytic potential of the low-index surfaces of CuO. Photocatalytic reaction on the surface of semiconductor requires the appropriate band edge of the semiconductor surface to drive redox reactions. The calculation begins with the electronic structure of bulk system; it aims to determine realistic input parameters and band gap prediction. CuO is an antiferromagnetic material with strong electronic correlations, so that we have applied DFT + U calculation with spin polarized approach, beside it, we also have used GW approximation to get band gap correction. Based on the input parameters obtained, then we calculate surface energy, work function and band edge of the surfaces based on a framework developed by Bendavid et al (J. Phys. Chem. B, 117, 15750-15760) and then they are aligned with redox potential needed for water splitting and CO<sub>2</sub> reduction. Based on the calculations result can be concluded that not all of low-index CuO have appropriate band edge to push reaction of water splitting and CO2 reduction, only the surface CuO(111) and CuO(011) which meets the required band edge. Fortunately, based on the formation energy, CuO(111) and CuO(011) is the most stable surface. The last we calculate electronic structure and optical properties (dielectric function) of low-index surface of CuO, in order to determine the surface state of the most stable surface of CuO.</p>
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献