Effects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines

Author:

Sanaei Masumeh,Kavoosi Fraidoon

Abstract

Background:  The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological cancers. Previously, we reported the effect of two HDACIs, valproic acid (VPA) and TSA, on colon cancer and hepatocellular carcinoma (HCC), respectively. The aim of the current in vitro study is to investigate the effects of TSA on the intrinsic apoptotic pathway, p21/Waf1/Cip1 (p21), p53, and histone deacetylases (HDACs) 1, 2 and 3 in human neuroblastoma LAN-1, glioblastoma GBM-29, HCC SMMC7721, and colon cancer COLO 201 cell lines. Materials and methods: In this lab-trial study, all three cell lines were seeded at the density of 3 × 105 cells per well and incubated for 24 hours. Then, the cells were treated with TSA based on IC50 values for 24 hours except in the control groups; the control cells were treated with the equal amounts of the DMSO solvent. Subsequently, cell viability, cell apoptosis and gene expression were determined by three techniques including MTT assay, flow cytometry assay, and qRT-PCR. Results: The result of qRT-PCR indicated that TSA could increase the expression levels of Bid, BimEL, Noxa, p21, and p53 genes and decrease those of Bcl-xL, RIP, Mcl-1, XIAP, HDACs 1, 2 and 3 significantly (P < 0.0001) by which it inhibited cell growth and induced significant cell apoptosis in LAN-1, GBM-29, SMMC7721, and COLO 201 cell lines (p value<0.001). Conclusion: TSA can affect cell apoptotic via the intrinsic apoptotic pathway in LAN-1, GBM-29, SMMC7721, and COLO 201 cell lines.

Publisher

Knowledge E DMCC

Subject

Oncology,Hematology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3