Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods

Author:

Mehrabani Sanaz,Zangeneh Soroush Morteza,Kheiri Negin,Sheikhpour Razieh,Bahrami Mahshid

Abstract

Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray gene expression data of 72 patients with acute myeloid leukemia (AML) and lymphoblastic leukemia (ALL) was used. To remove the redundant genes and identify the most important genes in the prediction of AML and ALL, a robust ℓ2,p-norm (0 < p ≤1) sparsity-based gene selection method was applied, in which the parameter p method was implemented from 1/4, 1/2, 3/4 and 1. Then, the most important genes were used by the random forest (RF) and support vector machine (SVM) classifiers for prediction of AML and ALL. Results: The RF and SVM classifiers correctly classified all AML and ALL samples. The RF classifier obtained the performance of 100% using 10 genes selected by the ℓ2,1/2-norm and ℓ2,1-norm sparsity-based gene selection methods. Moreover, the SVM classifier obtained a performance of 100% using 10 genes selected by the ℓ2,1/2-norm method. Seven common genes were identified by all four values of parameter p in the ℓ2,p-norm method as the most important genes in the classification of AML and ALL, and the gene with the description “PRTN3 Proteinase 3 (serine proteinase, neutrophil, Wegener granulomatosis autoantigen” was identified as the most important gene. Conclusion: The results obtained in this study indicated that the prediction of blood cancer from leukemia microarray gene expression data can be carried out using the robust ℓ2,p-norm sparsity-based gene selection method and classification algorithms. It can be useful to examine the expression level of the genes identified by this study to predict leukemia.

Publisher

Knowledge E DMCC

Subject

Oncology,Hematology,Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3