A New Algorithmic Trading Approach Based on Ensemble Learning and Candlestick Pattern Recognition in Financial Assets

Author:

AYCEL Üzeyir1,SANTUR Yunus1

Affiliation:

1. FIRAT ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ

Abstract

Financial assets considered as time series are chaotic in nature. The main goal of investors is to take a position at the right time and in the right direction by making predictions about the future on this chaotic series. These time series consist of the opening, low, high and closing price of a certain period. The approaches used to make predictions about trend direction and strength using moving averages and indicators based on them have noise and lag problems as they are obtained statistically. Candlestick charts, on the other hand, reflect the price-based psychology of bear and bull investors, as well as facilitating the interpretation of price movements by consolidating the said opening, closing, lowest and highest prices in a single image. It is known that it was applied to Japanese rice markets for the first time in history and there are 100+ candle patterns. In this study, an extensible architecture software framework using factory pattern and object-oriented approach is proposed for defining candlestick patterns and developing intelligent learning algorithms based on them. The proposed software framework can also be used in the development of new robotic approaches in terms of being applicable to all kinds of financial assets in every period.

Publisher

Firat Universitesi

Reference30 articles.

1. [1] Filiz, E., Karaboğa, H. A., Akoğul, S. (2017). Bist-50 endeksi değişim değerlerinin sınıflandırılmasında makine öğrenmesi yöntemleri ve yapay sinir ağları kullanımı, Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 26(1), 231-241.

2. [2] Pabuçcu, H. (2019). Borsa endeksi hareketlerinin tahmini: trend belirleyici veri, Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi, 22(1), 246-256.

3. [3] Şişmanoğlu, G., Koçer, F., Önde, M. A., Sahingöz, O. K. (2020). Derin Öğrenme yöntemleri ile borsada fiyat tahmini, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(1), 434-445.

4. [4] Santur, Y. Deep learning based regression approach for algorithmic stock trading: A case study of the Bist30, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 1195-1211.

5. [5] Budak, C. (2019). Teknik analiz indikatörlerinin performans karşılaştırması üzerine bir araştırma (Doctoral dissertation), Marmara Universitesi

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3