Migration of a Vehicle Tracking System Running on Relational Database to Big Data Environment

Author:

Koçer FerhatORCID,Bayraklı Selim1ORCID

Affiliation:

1. MİLLİ SAVUNMA ÜNİVERSİTESİ, HAVA HARP OKULU, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ, BİLGİSAYAR MÜHENDİSLİĞİ PR.

Abstract

Building a high-performance and scalable system has always been a challenge in tracking systems. At the root of this problem lies the excessive and real-time data overload. This paper aims to replace traditional approaches with big data approaches. In this study, a new big data ecosystem design for vehicle tracking system architecture is presented. The aim is to process real-time and extremely fast-generated location/tracking data very fast and increase the overall system performance. The process speed performance of the newly developed big data ecosystem is compared with the table query speed performance of a relational database. As a result of the comparison, the query speed of the big data ecosystem was found to be much faster than that of the relational database management system.

Publisher

Firat Universitesi

Reference15 articles.

1. Giusto D, Iera A, Morabito G, Atzori L. (Eds.). The internet of things: 20th Tyrrhenian workshop on digital communications. New York, USA: Springer Science & Business Media, 2010.

2. Goes PB. Design science research in top information systems journals. MIS Q.: Manag. Inf. Syst. 2014; 38(1): iii-viii.

3. Cox, M., & Ellsworth, D. Application-controlled demand paging for out-of-core visualization. In: Proceedings. Visualization'97 (Cat. No. 97CB36155); 1997 October; Phoenix, AZ, U.S.A. New York, USA: IEEE. pp. 235-244.

4. Koca B, Ceylan A. Uydu konum belirleme sistemlerindeki (GNSS) güncel durum ve son gelişmeler [Current Status and Recent Developments in Global Positioning Satellite Systems (GNSS)]. Geomatik 2018; 3(1); 63-73.

5. Eger Ö. “Big Data’nın (Büyük Veri) Endüstriyel Kullanımı”. Türkiyenin endüstri 4.0 platformu. 2017. https://www.endustri40.com/big-datanin-buyuk-veri-endustriyel-kullanimi (accessed March 28, 2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3