The Effect of the Second Stage Estimator on Model Performance in Post-LASSO Method

Author:

GENÇ Murat1ORCID,ÖZBİLEN Ömer2ORCID

Affiliation:

1. Tarsus Üniversitesi

2. MERSİN ÜNİVERSİTESİ

Abstract

Penalized linear regression methods are used for the accurate prediction of new observations and to obtain interpretable models. The performance of these methods depends on the properties of the true coefficient vector. The LASSO method is a penalized regression method that can simultaneously perform coefficient shrinkage and variable selection in a continuous process. Depending on the structure of the dataset, different estimators have been proposed to overcome the problems faced by LASSO. The estimation method used in the second stage of the post-LASSO two-stage regression method proposed as an alternative to LASSO has a considerable effect on model performance. In this study, the performance of the post-LASSO is compared with classical penalized regression methods ridge, LASSO, elastic net, adaptive LASSO and Post-LASSO by using different estimation methods in the second stage of the post-LASSO. In addition, the effect of the magnitude and position of the signal values in the real coefficient vector on the performance of the models obtained by these methods is analyzed. The mean squared error and standard deviation of the predictions calculated on the test set are used to compare the prediction performance of the models, while the active set sizes are used to compare their performance in variable selection. According to the findings obtained from the simulation studies, the choice of the second-stage estimator and the structure of the true coefficient vector significantly affect the success of the post-LASSO method compared to other methods.

Publisher

Firat Universitesi

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Konveks ve konveks olmayan cezalı regresyon yöntemlerinin karşılaştırılması üzerine bir çalışma;Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3