Automated Tuberculosis Classification with Chest X-Rays Using Deep Neural Networks -Case Study: Nigerian Public Health

Author:

Abubakar Muhammad Zaharaddeen1ORCID,Kaya Mustafa2ORCID,Eriş Mustafa3ORCID,Abubakar Mohammed Mansur2ORCID,Karakuş Serkan2ORCID,Sani Khalid Jibril2ORCID

Affiliation:

1. FIRAT ÜNİVERSİTESİ

2. FIRAT UNIVERSITY

3. FIRAT UNIVERSITY, FACULTY OF TECHNOLOGY

Abstract

Tuberculosis, a contagious lung ailment, stands as a prominent global mortality factor. Its significant impact on public health in Nigeria necessitates comprehensive intervention strategies. Detecting, preventing, and treating this disease remains imperative. Chest X-ray (CXR) images hold a pivotal role among diagnostic tools. Recent strides in deep learning have notably improved medical image analysis. In this research, we harnessed publicly available and proprietary CXR image datasets to construct robust models. Leveraging pre-trained deep neural networks, we aimed to enhance tuberculosis detection. Impressively, our experimentation yielded remarkable outcomes. Notably, f1-scores of 98% and 86% were attained on the respective public and private datasets. These results underscore the potency of deep neural networks in effectively identifying tuberculosis from CXR images. The study emphasizes the promise of this technology in combating the disease's spread and impact.

Publisher

Firat Universitesi

Reference30 articles.

1. Desmon S. “Taking a Deep Dive into Why Nigeria’s TB Rates are So High,” 2018. https://ccp.jhu.edu/2018/10/22/nigeria-tb-rates-high-tuberculosis/ (Last accessed Aug. 29, 2023).

2. WHO. “The End TB Strategy Global strategy and targets for tuberculosis prevention, care and control after 2015,” 2015, https://apps.who.int/iris/rest/bitstreams/1271371/retrieve. (Last accessed Aug. 29, 2023).

3. Alcantra MF, Liu C, Liu B, Brunette M, Zhang N, Sun T, Zhang P, Chen Q, Li Y, Albarracin CM, Peinado J, Garavito ES, Garcia LL, Curioso WH. “Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor communities in Perú,” Smart Heal., vol. 1–2, no. March, pp. 66–76, 2017, doi: 10.1016/j.smhl.2017.04.003.

4. WHO. Global Tuberculosis report 2016, https://apps.who.int/iris/bitstream/handle/10665/250441/9789241565394-eng.pdf?sequence=1 (Last accessed Aug. 29, 2023)

5. Harries AD et al.. “Deaths from tuberculosis in sub-Saharan African countries with a high prevalence of HIV-1,” Lancet Infect. Dis., vol. 357, no. 9267, pp. 1519–1523, 2001, doi: 10.1016/S0140-6736(00)04639-0.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3