Physicochemical Effects of PEG Content in Alginate-based Double Network Hydrogels as Hybrid Scaffolds

Author:

Gok Ozgul1ORCID

Affiliation:

1. ACIBADEM MEHMET ALİ AYDINLAR ÜNİVERSİTESİ

Abstract

This study aims to prepare a double-network hydrogel as hybrid networks bearing both natural and synthetic polymers to obtain scaffolds with increased swelling capacity and tunable mechanical and morphological properties. Physically cross-linked alginate hydrogel was reinforced with various ratios of Poly(ethylene glycol) (PEG) polymers which were chemically gellated via UV light exposure with a water soluble initiator. Physicochemical properties of the resulting hydrogels were systematically investigated via Fourier-transform infrared (FT-IR) spectroscopy for chemical composition and Scanning Electron Microscopy (SEM) for their morphological features like porosity. Furthermore, the effect of PEG amount in the final hydrogel (10, 20 and 40%) on swelling capacity was evaluated as well as the rheological properties. Prepared double-network hydrogels were demonstrated to be composed of both natural alginate polymer and synthetic PEG chains in FT-IR spectrum. Although 10%PEG containing hydrogel was not significantly different in terms of swelling capacity from the alginate hydrogel alone, increasing PEG amount seems to have improved the swelling ability. Comparative reological studies presented that introducing covalently cross-linked PEG network into alginate one increased crosspoint of storage and loss moduli almost 12 times more providing a stiffer scaffold. Increasing PEG content decreased the pore size on SEM images, indicating more crosslinking points in hydrogel structure.

Publisher

Firat Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3