CFD Investigation on The Jet-Engine Inspired Wind Turbine

Author:

Nur Shamimi Amirah Md Sunhazim ,Fazila Mohd Zawawi ,Ummikalsom Abidin ,Syahrullail Samion ,Kamarulafizam Ismail ,Ainaa Maya Munira Ismail

Abstract

The Malaysian Government has set a more ambitious target to achieve higher penetration of Renewable Energy (RE) in the Malaysian energy mix which was 31% by 2025. Compared to the penetration of solar and wind power specifically in the European region, whose sharing was more than 50% of total generation, Malaysia currently only has 2% of its energy coming from RE generation sources, which mostly was provided by solar photovoltaic. In Malaysia’s energy sources point of view, wind RE-based power generation system was foreseen a promising potential provided the technology was suitably designed for low wind conditions. Therefore, the potentiality of the Jet-Engine inspired Wind Turbine operating under low-speed wind environment by mean of Computational Fluid Dynamics (CFD) numerical approach were explored in This study. The main objectives were to develop a reliable numerical model for accessing the capability of the Jet-Engine inspired Wind Turbine and to regulate its performance with influence of curly shroud on the induced flow. The conventional shrouded Wind Turbine has been modified which consist of a stator and a rotor blade covered by curly-shaped shroud adapting the concept of Jet-Engine. A constant wind speed of 5 m/s which was the average wind speed in Malaysia, and tip speed ratio (TSR) varies from 2 to 6 were specified in the simulation. The investigation discovered that the curly-shaped shroud gave an impact to the performance of the Wind Turbine as it can be reviewed from the comparison of the power coefficient on the Jet-Engine inspired Wind Turbine with shroud and without shroud. It was found that the shrouded Wind Turbine improved the power coefficient by 8.6% which was from 0.35 to 0.38. The effect of the curly shroud was also analysed by obtained the velocity and pressure contour from the ANSYS Fluent, where there was a swirl formation at the shroud as the air mixed at different angle, which causes the pressure drop and inlet velocity increased.

Publisher

Akademia Baru Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3