Author:
D. Ramesh ,M. Mohan Babu ,G Balaji Prakash ,K. Jhansi Rani ,J. Peter Praveen ,G. V. R. Reddy
Abstract
This study uncovered a numerical simulation of the Williamson hybrid nanofluid's MHD on “heat and mass transfer flow” over a porous stretched sheet. The model made use of Cattaneo-Christov heat and mass fluxes. The situation's underlying physics is modelled using governing equations. Using an appropriate similarity transformation, these equations were transformed into a system of ordinary differential equations. Methodology/Approach: MATLAB software along with BVC4C tool is used to find the numerical solution of the problem. The study's findings show that while boosting the mass relaxation flux increases concentration distributions, doing so also increases temperature distributions. Thermal radiation, heat generation, and an additional value to improve temperature and velocity distributions, the Eckert number was measured. Major findings: Higher magnetic field values are shown to result in an increase in the velocity distribution because of the applied electromagnetic force. Additionally, a rise in the thermal radiation parameter is seen to broaden the distributions of velocity and temperature. Astrophysics, geophysics, biological sciences, and biomedical engineering are all helpful to this study. The findings of this study are generally well supported by the literature.
Subject
Fluid Flow and Transfer Processes,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献