Magneto-Hydrodynamic Effects on Heat and Mass Transfer in Hybrid Nanofluid Flow over A Stretched Sheet with Cattaneo-Christov Model

Author:

D. Ramesh ,M. Mohan Babu ,G Balaji Prakash ,K. Jhansi Rani ,J. Peter Praveen ,G. V. R. Reddy

Abstract

This study uncovered a numerical simulation of the Williamson hybrid nanofluid's MHD on “heat and mass transfer flow” over a porous stretched sheet. The model made use of Cattaneo-Christov heat and mass fluxes. The situation's underlying physics is modelled using governing equations. Using an appropriate similarity transformation, these equations were transformed into a system of ordinary differential equations. Methodology/Approach: MATLAB software along with BVC4C tool is used to find the numerical solution of the problem. The study's findings show that while boosting the mass relaxation flux increases concentration distributions, doing so also increases temperature distributions. Thermal radiation, heat generation, and an additional value to improve temperature and velocity distributions, the Eckert number was measured. Major findings: Higher magnetic field values are shown to result in an increase in the velocity distribution because of the applied electromagnetic force. Additionally, a rise in the thermal radiation parameter is seen to broaden the distributions of velocity and temperature. Astrophysics, geophysics, biological sciences, and biomedical engineering are all helpful to this study. The findings of this study are generally well supported by the literature.

Publisher

Akademia Baru Publishing

Subject

Fluid Flow and Transfer Processes,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3