Optimisation of H-Darrieus VAWT Solidity for Energy Extraction in Cooling Tower Exhaust Systems

Author:

Enderaaj Singh ,Sukanta Roy ,Yam Ke San ,Law Ming Chiat

Abstract

The technologies surrounding renewable energy have been receiving surmountable attention to producing clean energy and reducing the dependency on depleting fossil fuel sources. In this context, research investigations on vertical axis wind turbines (VAWT) in free stream flow condition has been extensively conducted to improve the energy extraction efficiency from the wind. VAWTs are particularly advantageous in locations not suitable for conventional horizontal axis wind turbines (HAWT). However, the applications of VAWTs are still limited due to their lower performances compared to their counterparts. Furthermore, the wind energy extraction problem is more prominent in urban areas with unpredictable and inadequate wind speed conditions. The present study focuses on an alternative way to harness wind energy from unnatural sources such as cooling tower exhaust systems with the reliable and consistent exhaust air. A three-dimensional numerical study has been conducted to investigate the performance of a 3-bladed H-Darrieus wind turbine (HDWT) using S-1046 airfoils of four different solidities under accelerated wind conditions of a cooling tower. The HDWT model is positioned at the cooling tower outlet, where it rotates using sliding mesh to measure the power output. Shear stress transport (SST) k- turbulence model solver was used to solve the implicit unsteady Reynolds-Averaged Navier-Stokes equations. It is observed that the higher solidity HDWT reached peak power coefficient at a lower tip speed ratio (TSR). In contrast, lower solidity HDWT achieved peak power coefficient at higher TSR. The higher solidity 0.375 and 0.450 produced a maximum power coefficient of 0.233 at TSR of 2.0.

Publisher

Akademia Baru Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3