Thrust Force for Drone Propeller with Normal and Serrated Trailing Edge

Author:

Mohd Zaki Bahrom ,Bukhari Manshoor ,Badrul Aisham Md Zain ,Izzuddin Zaman ,Djamal Hissein Didane ,Reazul Haq Abdul Haq ,Mohd Nizam Ibrahim

Abstract

The drone becomes more recognized in the civilian sector; the drone's popularity becomes increases as time goes by. Nevertheless, despite the excitement of flying drones, several types of issues occur caused by the drone. In some circumstances, the aeroacoustics noise is a big concern, and quiet drone propellers would be more environmentally friendly to the surrounding area. Moreover, the noise from the drone can be a nuisance for the surrounding population and animals. Therefore, a solution needs to be proposed to reduce the sound level produced by the drone so that drone can be piloted in a surrounding area without breaking any noise level limit set by the government. Hence, the propeller's serrated trailing edge type is the proposed solution to this problem. The serrated trailing edge propeller can reduce several drone noise decibels based on past research. Thus, an investigation is conducted to study the thrust force between the normal propeller and the serrated propeller. The aerodynamic performance of the serrated propeller is analysed using computational fluid dynamic simulation and compared to that of the normal propeller. Ansys Fluent 2021 is used to solve the dependable RNG k-epsilon turbulence model. The thrust force, thrust coefficient, and lift coefficient operating on both propellers were all simulated. The results obtained by the transient approach for propellers have been validated by earlier experimental studies.

Publisher

Akademia Baru Publishing

Subject

Fluid Flow and Transfer Processes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3