Stability Solution of Unsteady Stagnation-Point Flow and Heat Transfer over a Stretching/Shrinking Sheet in Nanofluid with Slip Velocity Effect

Author:

Nor Fadhilah Dzulkifli ,Norfifah Bachok ,Nor Azizah Yacob ,Ioan Pop ,Norihan Arifin ,Haliza Rosali

Abstract

Computational of unsteady flow with slip condition is essential since physically the heat transfer process is time-dependent and there may exist slip between fluid and surface. Therefore, this study aims to investigate the unsteady stagnation-point flow and heat transfer over a stretching/shrinking sheet immersed in nanofluid in the presence of slip velocity. By applying boundary layer theory and Tiwari-Das model, the governing equations are developed and transformed into a system of ordinary differential equations using similarity transformation, which are then solved numerically using bvp4c solver in MATLAB. The influence of slip velocity, stretching/shrinking parameters, nanoparticle volume fraction and unsteadiness parameter on the local skin friction coefficient, local Nusselt number, as well as velocity and temperature profiles are analysed. There are three types of nanoparticles considered, namely Copper (Cu), Alumina (Al203), Titania (TiO2) and water (H20) is the base fluid. It is found that dual solutions occur for certain parameters and the stability analysis is performed. The analysis shows that the first solutions are found to be stable than the second solution. The local skin friction coefficient and local Nusselt number are increasing with slip velocity, nanoparticle volume fraction for shrinking case; however, the opposite trend is observed for stretching case. By raising 20% of nanoparticle volume fraction for the shrinking sheet ( the friction at the surface increases 24% and 15.5% for heat transfer rate for the first solution. Moreover, for 10% of nanoparticle volume fraction for the shrinking sheet (and the first solution, varying slip parameters from 0 to 0.2, give rise to approximately 21% of the friction at the surface and 68% of the heat transfer rate.

Publisher

Akademia Baru Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3