Abstract
Objectives: Since protecting patients’ privacy is a major concern in clinical research, there has been a growing need for privacy-preserving data analysis platforms. For this purpose, a federated learning (FL) method based on the Observational Medical Outcomes Partnership (OMOP) common data model (CDM) was implemented, and its feasibility was demonstrated.Methods: We implemented an FL platform on FeederNet, which is a distributed clinical data analysis platform based on the OMOP CDM in Korea. We trained it through an artificial neural network (ANN) using data from patients who received steroid prescriptions or injections, with the aim of predicting the occurrence of side effects depending on the prescribed dose. The ANN was trained using the FL platform with the OMOP CDMs of Kyung Hee University Medical Center (KHMC) and Ajou University Hospital (AUH).Results: The area under the receiver operating characteristic curves (AUROCs) for predicting bone fracture, osteonecrosis, and osteoporosis using only data from each hospital were 0.8426, 0.6920, and 0.7727 for KHMC and 0.7891, 0.7049, and 0.7544 for AUH, respectively. In contrast, when using FL, the corresponding AUROCs were 0.8260, 0.7001, and 0.7928 for KHMC and 0.7912, 0.8076, and 0.7441 for AUH, respectively. In particular, FL led to a 14% improvement in performance for osteonecrosis at AUH.Conclusions: FL can be performed with the OMOP CDM, and FL often shows better performance than using only a single institution's data. Therefore, research using OMOP CDM has been expanded from statistical analysis to machine learning so that researchers can conduct more diverse research.
Publisher
The Korean Society of Medical Informatics
Subject
Health Information Management,Health Informatics,Biomedical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献