Requirements for Trustworthy Artificial Intelligence and its Application in Healthcare

Author:

Kim MyeongjuORCID,Sohn HyojuORCID,Choi SookyungORCID,Kim SejoongORCID

Abstract

Objectives: Artificial intelligence (AI) technologies are developing very rapidly in the medical field, but have yet to be actively used in actual clinical settings. Ensuring reliability is essential to disseminating technologies, necessitating a wide range of research and subsequent social consensus on requirements for trustworthy AI.Methods: This review divided the requirements for trustworthy medical AI into explainability, fairness, privacy protection, and robustness, investigated research trends in the literature on AI in healthcare, and explored the criteria for trustworthy AI in the medical field.Results: Explainability provides a basis for determining whether healthcare providers would refer to the output of an AI model, which requires the further development of explainable AI technology, evaluation methods, and user interfaces. For AI fairness, the primary task is to identify evaluation metrics optimized for the medical field. As for privacy and robustness, further development of technologies is needed, especially in defending training data or AI algorithms against adversarial attacks.Conclusions: In the future, detailed standards need to be established according to the issues that medical AI would solve or the clinical field where medical AI would be used. Furthermore, these criteria should be reflected in AI-related regulations, such as AI development guidelines and approval processes for medical devices.

Funder

Ministry of Health and Welfare

Institute of Information and communications Technology Planning and Evaluation

Ministry of Science and ICT

National Research Foundation of Korea

Ministry of Education

Publisher

The Korean Society of Medical Informatics

Subject

Health Information Management,Health Informatics,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3