Nomogram of Naive Bayesian Model for Recurrence Prediction of Breast Cancer
Author:
Affiliation:
1. Department of Public Health and Medical Administration, Dongyang University, Yeongju, Korea.
2. Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea.
3. Breast Cancer Center, Ulsan City Hospital, Ulsan, Korea.
Publisher
The Korean Society of Medical Informatics
Subject
Health Information Management,Health Informatics,Biomedical Engineering
Link
http://synapse.koreamed.org/pdf/10.4258/hir.2016.22.2.89
Reference13 articles.
1. Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks
2. A combined neural network and decision trees model for prognosis of breast cancer relapse
3. Classification of Ipsilateral Breast Tumor Recurrences After Breast Conservation Therapy Can Predict Patient Prognosis and Facilitate Treatment Planning
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of Breast Cancer Using Simple Machine Learning Algorithms;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09
2. Machine learning‐based model constructed from ultrasound radiomics and clinical features for predicting HER2 status in breast cancer patients with indeterminate (2+) immunohistochemical results;Cancer Medicine;2024-01-17
3. Breast cancer recurrence prediction with deep neural network and feature optimization;Automatika;2024-01-02
4. A novel approach for transforming breast cancer stem cells into endothelial cells;Experimental and Therapeutic Medicine;2023-12-21
5. Predictive value of radiomics-based machine learning for the disease-free survival in breast cancer: a systematic review and meta-analysis;Frontiers in Oncology;2023-08-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3