Quantification of Efflorescences in Pustular Psoriasis Using Deep Learning

Author:

Amruthalingam LudovicORCID,Buerzle OliverORCID,Gottfrois PhilippeORCID,Jimenez Alvaro GonzalezORCID,Roth AnastasiaORCID,Koller ThomasORCID,Pouly MarcORCID,Navarini Alexander A.ORCID

Abstract

Objectives: Pustular psoriasis (PP) is one of the most severe and chronic skin conditions. Its treatment is difficult, and measurements of its severity are highly dependent on clinicians’ experience. Pustules and brown spots are the main efflorescences of the disease and directly correlate with its activity. We propose an automated deep learning model (DLM) to quantify lesions in terms of count and surface percentage from patient photographs. Methods: In this retrospective study, two dermatologists and a student labeled 151 photographs of PP patients for pustules and brown spots. The DLM was trained and validated with 121 photographs, keeping 30 photographs as a test set to assess the DLM performance on unseen data. We also evaluated our DLM on 213 unstandardized, out-of-distribution photographs of various pustular disorders (referred to as the pustular set), which were ranked from 0 (no disease) to 4 (very severe) by one dermatologist for disease severity. The agreement between the DLM predictions and experts’ labels was evaluated with the intraclass correlation coefficient (ICC) for the test set and Spearman correlation (SC) coefficient for the pustular set. Results: On the test set, the DLM achieved an ICC of 0.97 (95% confidence interval [CI], 0.97–0.98) for count and 0.93 (95% CI, 0.92–0.94) for surface percentage. On the pustular set, the DLM reached a SC coefficient of 0.66 (95% CI, 0.60–0.74) for count and 0.80 (95% CI, 0.75–0.83) for surface percentage. Conclusions: The proposed method quantifies efflorescences from PP photographs reliably and automatically, enabling a precise and objective evaluation of disease activity.

Funder

Helmut-Fischer Foundation

Botnar Foundation

University of Basel

Publisher

The Korean Society of Medical Informatics

Subject

Health Information Management,Health Informatics,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3