Affiliation:
1. Insect Biocontrol Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
Abstract
Five commercial granular formulations of Bacillus thuringiensis Berliner marketed for controlling the European corn borer, Ostrinia nubilalis (Hübner), were compared for insecticidal activity using treated discs of bean leaves. Three formulations, Dipel 10G®, Full-Bac ECBG™, and Strike BT®, were similar in terms of both mortality and speed of kill. A formulation containing a strain of B. thuringiensis developed by plasmid fusion, Condor G®, caused mortality similar to the other three formulations, but the speed of kill was slower. A fifth formulation containing a B. thuringiensis toxin produced by Pseudomonas fluorescens Migula as result of a gene transfer, M-Peril™, caused substantially less mortality than any of the other formulations. An experimental water dispersible formulation, based on a previously developed granular matrix formulation containing B. thuringiensis and a nutrient-based phagostimulant, caused significantly higher mortality of the European corn borer than a similar formulation without the phagostimulant. Simulated field studies were conducted to study the effects of the phagostimulant on feeding and protection of B. thuringiensis from ultraviolet (UV) light. Bean plants treated with B. thuringiensis and the phagostimulant were exposed to different UV regimes outdoors under canopies made of specialized acrylic plastics and then infested with larvae of the corn earworm, Helicoverpa zea (Boddie). A significant interaction between the UV regimes and the phagostimulant was found, indicating that the phagostimulant acted both as a feeding stimulant and as a UV protectant to enhance the activity of B. thuringiensis.
Publisher
Georgia Entomological Society
Subject
Insect Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献