RNAi Suppression of Vacuolar ATPase Subunit H Inhibits Immunity-Related Gene Expression in Pine Sawyer Beetle (Coleoptera: Cerambycidae)

Author:

Li Xiaojuan123,Yin Huayang123,Guo Wanlin123,Niu Xiaoxiao134,Dong Guangping123,Fang Jianmin123,Liu Hongjian123

Affiliation:

1. Institute of Forest Protection, Anhui Provincial Academy of Forestry, Hefei, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Hefei, People's Republic of China; and School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, People's Republic of China

2. Institute of Forest Protection, Anhui Provincial Academy of Forestry, Hefei, People's Republic of China.

3. Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Hefei, People's Republic of China.

4. School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, People's Republic of China.

Abstract

Abstract The pine sawyer beetle, Monochamus alternatus Hope, is a devastating wood borer of several species of pine trees, and the main transmitting vector of the pine wood nematode, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle (Aphelenchida: Parasitaphelenchidae). To explore new techniques for prevention and control of this destructive beetle, a novel gene vacuolar ATPase subunit H (V-ATPase H) was chosen as RNA interference (RNAi) target gene. Relative expression of V-ATPase H in different tissues and silencing efficiency in an in vitro RNAi experiment was assayed by using reverse transcription–quantitative polymerase chain reaction. The results indicated that the mRNA abundance of V-ATPase H in the gut was significantly higher than that in fat body, residual body, and hemolymph. Double-stranded RNA (dsRNA) targeting V-ATPase H was able to silence the expression of target gene effectively at 24 h posttreatment. Expression of immunity-related genes was examined after treatment with dsRNA targeting V-ATPase H, and transcript levels were compared with the control. The results showed that RNAi suppression of V-ATPase H inhibited the expression of immunity-related genes. This is the first demonstration of an in vitro RNAi experiment in any insect hemolymph that provides a novel environment for evaluating RNAi in insects, as well as shows potential for developing RNAi-mediated strategy for the control of M. alternatus.

Publisher

Georgia Entomological Society

Subject

Insect Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3