Embedded platform based heart murmur classification using deep learning approach

Author:

Vakamullu Venkatesh,Mishra Madhusudhan

Abstract

Ubiquitous Perturbations in cardiac auscultation properties, cardiovascular diseases (CVDs) are widely recognized. In the auscultation procedure, the appearance of pathological cardiac murmurs is linked to heart disorders. A noble automated detection system using 1-D Convolutional Neural Network (CNN) for the detection of pathological heart murmurs is proposed in this study, which removes the difficult task of extracting and selecting features. It directly acts on the phonocardiogram (PCG) signals. The fundamental purpose of this research is to develop a classification model for consistent recognition of cardiac murmurs when the data-set is imbalanced. In view of this, the proposed study for the imbalanced data-set incorporates the Adaptive Synthetic (ADASYN) approach to generate synthetic data for the minority class. The outcome analysis illustrates the positive result in the identification of heart murmurs on both balanced and imbalanced data-sets. Therefore, the developed deep learning model will learn better from the minority class and classify heart murmurs accurately.

Publisher

Universidad Tecnica de Manabi

Subject

Education,General Nursing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3