E-Ticaret Alanı İçin Sipariş İptallerini Tahmin Etme: Perakendecilik Deneyimine Dayalı Önerilen Bir Model

Author:

ŞAHİNBAŞ Kevser1

Affiliation:

1. İSTANBUL MEDİPOL ÜNİVERSİTESİ

Abstract

E-Commerce technologies enable contact between businesses and their suppliers for the aim of exchanging information such as purchase orders, invoices, and payments thank to the rapid development in information technologies. E-Commerce has become a particularly important concept and has revolutionized the retail space. Understanding customer behavior patterns is key to gaining competitive advantage and achieving business goals. Predicting the probability of order cancellations has become a very urgent need as it causes loss of revenue for the retailer. When dealing with day-to-day operations such as order processing, tracking and order cancellations, finding enough time to grow the business is difficult. Cancellations are an important aspect of retail industry revenue management. In fact, little is known about the factors that cause customers to cancel or how to avoid them. The aim of this study is to propose a model that predicts the tendency to cancel an order and the parameters that affect the cancellation of the order. This solution can identify key factors that cause orders to be canceled by analyzing historical transaction data. A custom modeling application has been created that helps automate the process of tracking order cancellations in real time and predict the probability of an order being cancelled. For this purpose, machine learning techniques (ML) such as Artificial Neural Network, Support Vector Machine, Linear and Logistic Regression, XGBoost, Random Forest are applied to provide a tool for predicting order cancellations. The Random Forest algorithm achieves the best performance with 86% accuracy and 88% F1-Score compared to the other algorithm. This work will help firms manage their inventories well and strengthen their actions regarding customer behavior.

Publisher

Journal of the Human and Social Sciences Researchers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3