Low-Cost Instrument to Monitor Sulphur Dioxide Emissions Based on The DOAS Method

Author:

Zen Nur,Huboyo Haryono Setiyo,Romadhon Moch. Syarif,Fatkhurrahman Januar Arif,Amrulah Sidna Kosim

Abstract

Various techniques to measure SO2 concentration based on Differential Optical Absorption Spectroscopy (DOAS) have been widely developed and applied for various measurements. However, most of the applications are still relatively expensive. Some efforts have been made to reduce the cost by using Ultraviolet Light Emitting Diodes (LEDs) as light sources, showing promising results. Further reductions can be possibly made by providing an alternative to replace high spectral resolution spectrometers widely used in DOAS applications since those spectrometers are commercially expensive. This paper studies the feasibility of a DOAS instrument using a low-cost spectrometer and UV-LEDs as light sources. The resolution of the spectrometer is 0.7 nm. With this resolution, it is expected that the instrument hardly captures narrow band structures of SO2 optical absorption in the spectral range between 280 nm and 320 nm when measuring SO2 gas concentration lower than the limits of SO2 emissions regulated by the Indonesian government. To compensate for this drawback, narrow and broad bands of optical absorption structures are considered in the data analysis to achieve a detection limit far below the regulated limits. To capture the broadband structures, four UV-LEDs are used to cover spectral absorption from 250 nm to 320 nm. The instrument was calibrated using eight different standard concentrations of SO2. The correlation between the readings and the standard concentrations is high, indicated by the Pearson correlation coefficient of 0.9999. It was also found that the lowest concentration the instrument can distinguish from blank samples or the Limit of Detection is 16 ppm. However, the instrument can precisely measure concentrations higher than or equal to 25 ppm with a standard deviation of less than 10% of the mean concentration measured from five measurements. This is far below the required legal limits, below 229 ppm. After the calibration, the DOAS instrument was used to measure SO2 sampled from the emission of burning coals. To compare, a commercial SO2 sensor was used to measure the same gas. The results indicate that the difference in the readings between the two instruments is around 6% of the concentration.

Publisher

Center of Industrial Pollution Prevention Technology

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3