An implementation of a plasma physics application for distributed-memory supercomputers using a directive-based programming framework

Author:

Asch Christian,Francesquini Emilio,Meneses Esteban

Abstract

To extract performance from supercomputers, programmers in the High Performance Computing (HPC) community are often required to use a combination of frameworks to take advantage of the multiple levels of parallelism. However, over the years, efforts have been made to simplify this situation by creating frameworks that can take advantage of multiple levels. This often means that the programmer has to learn a new library. On the other hand, there are frameworks that were created by extending the capabilities of established paradigms. In this paper, we explore one of this libraries, OpenMP Cluster. As its name implies, it extends the OpenMP API, which allows seasoned programmers to take advantage of their experience to use just one API to program in sharedmemory and distributed-memory parallelism. In this paper, we took an existing plasma physics code that was programmed with MPI+OpenMP and ported it over to OpenMP Cluster. We also show that under certain conditions, the performance of OpenMP Cluster is similar to that of the MPI+OpenMP code.

Publisher

Universidad Autonoma de Bucaramanga

Reference9 articles.

1. Allmann-Rahn, F., Lautenbach, S., Deisenhofer, M., & Grauer, R. (2024, March). The muphyII Code: Multiphysics Plasma Simulation on Large HPC Systems. Computer Physics Communications, 296, 109064. doi:https://doi.org/10.1016/j.cpc.2023.109064

2. Choi, J. Y., Chang, C.-S., Dominski, J., Klasky, S., Merlo, G., Suchyta, E., . . . Wood, C. (2018). Coupling Exascale Multiphysics Applications: Methods and Lessons Learned. 2018 IEEE International Conference on e-Science and Grid Computing (pp. 442-452). Amsterdam, Netherlands: IEEE. doi:10.1109/eScience.2018.00133

3. Coto-Vílchez, F., Vargas, V. I., Solano-Piedra, R., Rojas-Quesada, M. A., Araya-Solano, L. A., Ramírez, A. A., . . . Arias, S. (2020, July 8). Progress on the small modular stellarator SCR-1: new diagnostics and heating scenarios. Journal of Plasma Physics, 86(4), 815860401. doi:10.1017/S0022377820000677

4. Di Francia Rosso, P. H., & Francesquini, E. (2022). OCFTL: An MPI Implementation-Independent Fault Tolerance Library for Task-Based Applications. In I. Gitler, C. J. Barrios Hernández, & M. Esteban (Ed.), High Performance Computing. 8th Latin American Conference, CARLA 2021, Guadalajara, Mexico, October 6–8, 2021, Revised Selected Papers. 1540, pp. 131-147. Springer, Cham. doi:10.1007/978-3-031-04209-6_10

5. Jiménez, D., Campos-Duarte, L., Solano-Piedra, R., Araya-Solano, L. A., Meneses, E., & Vargas, I. (2020). BS-SOLCTRA: Towards a Parallel Magnetic Plasma Confinement Simulation Framework for Modular Stellarator Devices. In J. L. Crespo-Mariño, & E. Meneses-Rojas (Ed.), High Performance Computing. 6th Latin American Conference, CARLA 2019, Turrialba, Costa Rica, September 25–27, 2019, Revised Selected Papers. 1087, pp. 33-48. Springer, Cham. doi:10.1007/978-3-030-41005-6_3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3