Modeling Internet Search Behavior of Cross-Laminated Timber

Author:

Via Brian K.,Kennedy David,Peresin Maria S.

Abstract

Abstract The Internet is a powerful tool that can be leveraged to explore user search behavior. Google Trends is a compelling database that tracks the frequency with which all users search any given word. There is thus an opportunity to see if the search histories obtained from Google Trends can be merged with data analytics to tease out underlying relationships with similar searches for cross-laminated timber (CLT). In this study, multiple linear regression was used to predict the search strength of the term cross laminated timber from 60 possible variables that may be directly or indirectly associated with CLT. This study was able to model the search term CLT (R2 = 0.76) using a reduced model of 20 variables. However, while prediction strength was strong, our primary interest was to statistically classify and rank important variables that might be important to CLT. To achieve this, the Mallow's Cp statistic was used to build the most robust model possible. To confirm with the literature, we also compared our study with another Web-based study and found a significant linear relationship between the t statistic in our study and the frequency of the same or similar search term in their study (R2 = 0.76). This agreement between studies helps to support our hypothesis that multiple linear regression coupled with Google Trends is a new tool that may assist marketers to identify emerging trends important to CLT.

Publisher

Forest Products Society

Subject

Plant Science,General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3