Identification of Tree Species and Extent of Material Deterioration of Wood Components in the Yangjia Courtyard Ancient Building

Author:

Yang Yan,Li Bin,Liu Yuqing,Zhang Wenqiang,Wang Chuanbo

Abstract

AbstractThe identification of the tree species and the extent of material deterioration in the wooden components of the walkway of the first courtyard of the ancient Yangjia Courtyard were analyzed in this study using bright-field microscopy, polarized light, fluorescence, and Fourier-transform infrared (FTIR) spectroscopy methods. The results are as follows: (1) samples No. 1 and No. 2, and No. 4, No. 3, and No. 5 taken from the roots of the wooden pillars were identified as lace-bark pine wood (Pinus bungeana), poplar woods (Populus spp.), large-fruited elm wood (Ulmus macrocarpa), and spruce wood (Picea sp.), respectively on the basis of observation of anatomical structural characteristics and analysis of selection principle of “local selection” in ancient buildings. (2) The observation of polarization and fluorescence and the analysis of FTIR spectra showed that the brightness of crystalline cellulose birefringence reduced severely, and analysis of FTIR spectra showed that the absorption peaks representing cellulose and hemicellulose in the lace-bark pine and spruce wooden components disappeared or decreased. However, the polarization and fluorescence and the FTIR spectra of the poplar and elm wooden components showed that the brightness of the crystalline cellulose birefringence and the absorption peaks remained constant, as the controls did. (3) According to the results of the effects of the polarization and fluorescence effects and the FTIR spectra, we concluded that the lace-bark pine and spruce wooden components were severely attacked by brown rot fungi; in contrast, the wooden components of poplar and elm were not attacked by wood decay fungus, but were attacked by insects. These results provide scientific guidance for subsequent preventive conservation such as preservative treatment and insect prevention.

Publisher

Forest Products Society

Subject

Plant Science,General Materials Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3