Characterization of Cellulose Nanocrystal Suspension Rheological Properties Using a Rotational Viscometer

Author:

Peng Yucheng,Xia Changlei,Via Brian

Abstract

Abstract Interest in cellulose nanocrystal (CNC) recently has been growing significantly. Many applications have been developed for CNC and appropriate procedures to handle the CNC suspensions are critical for these applications. In this study, we explored a method evaluating CNC suspensions based on rheological property characterization. We used a rotational viscometer to characterize CNC suspensions at concentrations of 3, 4, 5, and 6 wt.%. We collected primary readings from the rotational viscometer, including spindle rotation speed and torque, to generate apparent viscosity and shear rate for CNC suspensions. We applied three different methods summarized from the literature to calculate apparent viscosity and real shear rate. We critically analyzed differences among calculation results from the three methods. Shearing thinning behaviors obeyed the power law flow model for all CNC suspensions in the shear rate tested. At different concentrations, consistency and flow behavior indices in the model differed in the measured shear rate range. With the same shear rate, higher concentration CNC suspension had a higher apparent viscosity. The apparent viscosity of the CNC suspension was associated with its weight concentration in a power law relationship. This study indicated that a rotational viscometer can be used as a quality control tool for characterizing the rheological properties of the CNC suspensions. We made recommendations for using appropriate calculation methods to obtain shear rate and apparent viscosity of CNC suspensions from the primary readings of a rotational viscometer under different situations.

Publisher

Forest Products Society

Subject

Plant Science,General Materials Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3