The Effect of Acid Treatment Time, Particle Size, and Synthesis Method on the Physical and Mechanical Properties of Dental Materials Produced from Flue Gas Desulfurization (FGD) Gypsum

Author:

Motong Noppawan,Ukaew Suchada,Tianboot Kanokporn,Mahachon Kanitta

Abstract

FGD gypsum, a byproduct of coal-fired power plants, is readily available and relatively inexpensive, which makes it an ideal material for a variety of applications. This study considered the use of FGD gypsum as a substitute for natural gypsum in dental materials. The goal of this research was to investigate how acid treatment time, particle size, and the synthesis method impact the physical and mechanical properties of dental materials to be used in a dental study model for training in dental sciences, and for casting a gypsum model after the removal of the impression material from the patient's mouth. The study used various sulfuric acid treatment times (15, 30, and 60 min), particle sizes (less than 0.1 mm, 0.1-0.35 mm, and 0.4-0.45 mm), and synthesis methods (Method A for dental plaster and Method B for dental stone). From the results, an acid treatment time of 15 min was sufficient for removing impurities from the FGD gypsum while enhancing the compressive strength. The smaller particles provided higher compressive strength than the larger particles. FGD gypsum became lighter in color when treated with sulfuric acid, and the crystal structure had a rough and porous surface. The synthesis methods had a significant influence on the physical properties of dental gypsum. The increased alpha calcium sulfate hemihydrate (α-HH) phase content resulted in improved compressive strength. The gypsum synthesized using Method B exhibited the highest compressive strength due to the presence of the α-HH phase of 65.9%. While gypsum synthesized using Method A contained a α-HH phase of 58.9%. For further study, once the suitable conditions for synthesizing gypsum that meet the compressive strength requirements of the ISO standard for dental materials are achieved, there will be ongoing research and development to improve various properties. Additionally, practical applications will be considered, such as using it in conjunction with modern techniques such as 3D printing instead of traditional die-casting methods.

Publisher

Naresuan University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3