Author:
Lapka Marek,Straňák Zbyněk
Abstract
This article presents a summary of recent advances in the development and use of complex systems using artificial intelligence (AI) in neuro-ophthalmology. The aim of the following article is to present the principles of AI and algorithms that are currently being used or are still in the stage of evaluation or validation within the neuro-ophthalmology environment. For the purpose of this text, a literature search was conducted using specific keywords in available scientific databases, cumulatively up to April 2023. The AI systems developed across neuro-ophthalmology mostly achieve high sensitivity, specificity and accuracy. Individual AI systems and algorithms are subsequently selected, simply described and compared in the article. The results of the individual studies differ significantly, depending on the chosen methodology, the set goals, the size of the test, evaluated set, and the evaluated parameters. It has been demonstrated that the evaluation of various diseases will be greatly speeded up with the help of AI and make the diagnosis more efficient in the future, thus showing a high potential to be a useful tool in clinical practice even with a significant increase in the number of patients.
Publisher
Czech Society of Ophthalmology of the CzMA
Reference43 articles.
1. Global CSU. How does artificial intelligence work?: CSU Global. The Official Blog of CSU Global. https://csuglobal.edu/blog/how-does-artificial-intelligence-actually-work. Citace 11.04.2023.
2. Pei K, Cao Y, Yand J, Jana S. DeepXplore: Automated Whitebox Testing of Deep Learning Systems. Communications of the ACM. 2019;62(11): 137-145. https://doi.org/10.1145/3361566
3. Grzybowski A, Brona P, Lim G, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye (Lond). 2020;34(3):451-460. doi:10.1038/s41433-019-0566-04
4. Mayro EL, Wang M, Elze T, Pasquale LR. The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye.2020;34:1–11. doi:10.1038/s41433-019-0577-x5
5. Yan Q, Weeks DE, Xin H, et al. Deep-learning-based prediction of late age-related macular degeneration progression. Nat Mach Intell. 2020;2:141-150. doi:10.1038/s42256-020-0154-96