Design a Hybrid Approach for the Classification and Recognition of Traffic Signs Using Machine Learning

Author:

Ali Guma,Sadıkoğlu Emre,Abdelhak Hatim

Abstract

The automatic system for classifying traffic signs is a critical task of Advanced Driver Assistance Systems (ADAS) and a fundamental technique utilized as an integral part of the various vehicles. The recognizable features of a traffic image are utilized for their classification. Traffic signs are designed to contain specific shapes and colours, with some text and some symbols with high contrast to the background. This paper proposes a hybrid approach for classifying traffic signs by SIFT for image feature extraction and SVM for training and classification. The proposed work is divided into phases: pre-processing, Feature Extraction, Training, and Classification. MATLAB is used for the implementation purpose of the proposed framework, and classification is carried out by utilizing real traffic sign images

Publisher

Wasit University

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Reference14 articles.

1. Ansari, G., Rani, P., & Kumar, V. (2023). A Novel Technique of Mixed Gas Identification Based on the Group Method of Data Handling (GMDH) on Time-Dependent MOX Gas Sensor Data. In R. P. Mahapatra, S. K. Peddoju, S. Roy, & P. Parwekar (Eds.), Proceedings of International Conference on Recent Trends in Computing (Vol. 600, pp. 641–654). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-8825-7_55

2. Bhola, B., Kumar, R., Rani, P., Sharma, R., Mohammed, M. A., Yadav, K., Alotaibi, S. D., & Alkwai, L. M. (2022). Quality‐enabled decentralized dynamic IoT platform with scalable resources integration. IET Communications, cmu2.12514. https://doi.org/10.1049/cmu2.12514

3. Deshpande, A. V., & Subashini, M. M. (2017). An investigative approach towards various image segmentation algorithms used for traffic sign recognition. 2017 Fourth International Conference on Image Information Processing (ICIIP), 1–6. https://doi.org/10.1109/ICIIP.2017.8313693

4. Fitriyah, H., Widasari, E. R., & Setyawan, G. E. (2017). Traffic sign recognition using edge detection and eigen-face: Comparison between with and without color pre-classification based on Hue. 2017 International Conference on Sustainable Information Engineering and Technology (SIET), 155–158. https://doi.org/10.1109/SIET.2017.8304127

5. Greenhalgh, J., & Mirmehdi, M. (2012). Real-Time Detection and Recognition of Road Traffic Signs. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1498–1506. https://doi.org/10.1109/TITS.2012.2208909

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3