Optimization of Vehicles Routing Problem using GA For AL-Rasheed municipality, Baghdad, Iraq

Author:

Talib Zainab,Al-Huseiny Muayed

Abstract

There are several problems with waste collection, transportation, processing, and disposal, particularly in major cities. The frequency of garbage collection is an important concern for municipal control. If waste is not disposed of properly, environmental problems such as air pollution and groundwater contamination may occur. This problem raises the alarm for the need for specialized solutions for averting potential calamities that might occur throughout the world. Before deploying to actual situations, computer modeling and planning of waste collection are frequently performed to minimize the negative impact solid waste can have on the environment. As a result, choosing the optimal waste collection policy has a large effect on cost savings. The current study's objective is to apply a genetic algorithm to reach the goals, illustrating the process of selecting the optimal route for the vehicle with the lowest time and greatest weight among several paths. The other goal is to create a schedule for the vehicles in order to decrease them. The schedule will minimize vehicle-related costs such as maintenance, gasoline, work staff salaries, and other vehicle-related costs. In the current study, the MATLAB application R2020a is used to apply reliable data of 10 vehicles from the AL-Rasheed Municipality waste collection vehicles after processing it to be acceptable with the GA. After optimizing the time for routes and weights of lifted trash, the majority of the results improved dramatically. The results reveal that the top five vehicles (8, 6, 7, 1, 4) have a great percentage improvement in the number of collection points (133.3%, 100%, 100%, 66.7%, and 50%), respectively.

Publisher

Wasit University

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3