Stage-Discharge Relationships of Broad Crested Weir for submerged Flow Condition Utilizing Incomplete Self-Similarity(ISS) Technique

Author:

Toama Rawaa,Shamkhi Mohammed S.

Abstract

Abstract A broad-crested weir is one of the simplest and oldest hydraulic structures.It was used to measure flow regulate flow depth and control flood passage. Open channel flow measurement requirements are based on the experiments performed to evaluate the empirical discharge coefficients and equations. The aim of this study is to develop the stage-discharge relationships using incomplete self-similarity theory and traditional methods for calculating the discharge coefficient (Cds) and to determine which method is the most effective. All experiments were carried out in a channel  with a cross-section of (0.5 × 0.5) m and a length of 15 m. 125 experiments were carried out on 25 physical models of a broad crested weir with a rounded edge, under submerged flow conditions. The results showed, after comparing the two methods, and by calculating the mean absolute relative error (MARE) for discharges . It is equal to (4.25%) using the incomplete self-similarity theory, and it is equal to (7.05) by using the traditional method. Thus, the incomplete self-similarity formula is more accurate than the other method.

Publisher

Wasit University

Subject

Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3