Applications of biochip and microarray systems in pharmacogenomics

Author:

Jain KK1

Affiliation:

1. Jain PharmaBiotech, Bläsiring 7, CH-4057 Basel, Switzerland. jain@pharmabiotech.ch

Abstract

A DNA microarray system is usually comprised of DNA probes formatted on a microscale on a glass surface (chip), plus the instruments needed to handle samples (automated robotics), to read the reporter molecules (scanners) and analyse the data (bioinformatic tools). Biochips are formed by in situ (on chip) synthesis of oligonucleotides or peptide nucleic acids (PNAs) or spotting of DNA fragments. Hybridisation of RNA- or DNA-derived samples on chips allows the monitoring of expression of mRNAs or the occurrence of polymorphisms in genomic DNA. Basic types of DNA chips are the sequencing chip, the expression chip and chips for comparative genomic hybridisation. Advanced technologies used in automated microarray production are photolithography, mechanical microspotting and ink jets. Bioelectronic microchips contain numerous electronically active microelectrodes with specific DNA capture probes linked to the electrodes through molecular wires. Several biosensors have been used in combination with biochips. PNA biosensors commonly rely on the immobilisation of a single-stranded DNA sequence (the ‘probe’) onto a transducer surface for hybridisation with the complementary (‘target’) strand to give a suitable electrical signal. Other sensors are cell-based immunobiosensors with engineered molecular recognition, integrated biosensors based on phototransistor integrated circuits and sensors based on surface plasmon resonance. Microarray technologies offer enormous savings in time and labour as compared to standard gel-based microsatellite methods. Reading of the information and its management by bioinformatics is necessary because of the enormous amount of data generated by the various technologies using microarrays. Standardised procedures are essential for compatible data production, quality control and analysis. Expression monitoring is the most biologically informative application of this technology at present. Microarray technology has important applications in pharmacogenomics: drug discovery and development, drug safety and molecular diagnostics. DNA chips will facilitate the integration of diagnosis and therapeutics, as well as the introduction of personalised medicines.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

Reference44 articles.

1. Biotechnological applications of lab-chips and microarrays

2. com.atypon.modules.pdfplus.lexers.AuthorGroup@1f613ec6Microarrays held in Zürich, Switzerland (17-19 January 2000).

3. com.atypon.modules.pdfplus.lexers.AuthorGroup@649f4fdd: Impact of Genomics on Drug Development. Decision Resources, Inc., Waltham, Massachusetts, USA (1999).

4. Detection of specific sequences among DNA fragments separated by gel electrophoresis

5. Light-Directed, Spatially Addressable Parallel Chemical Synthesis

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3