Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation

Author:

Huang Sui1

Affiliation:

1. Surgical Research, Enders 1007, Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. sui.huang@tch.harvard.edu

Abstract

The completion of the first draft of the human genome sequence has revived the old notion that there is no one-to-one mapping between genotype and phenotype. It is now becoming clear that to elucidate the fundamental principles that govern how genomic information translates into organismal complexity, we must overcome the current habit of ad hoc explanations and instead embrace novel, formal concepts that will involve computer modelling. Most modelling approaches aim at recreating a living system via computer simulation, by including as much details as possible. In contrast, the Boolean network model reviewed here represents an abstraction and a coarse-graining, such that it can serve as a simple, efficient tool for the extraction of the very basic design principles of molecular regulatory networks, without having to deal with all the biochemical details. We demonstrate here that such a discrete network model can help to examine how genome-wide molecular interactions generate the coherent, rule-like behaviour of a cell – the first level of integration in the multi-scale complexity of the living organism. Hereby the various cell fates, such as differentiation, proliferation and apoptosis, are treated as attractor states of the network. This modelling language allows us to integrate qualitative gene and protein interaction data to explain a series of hitherto non-intuitive cell behaviours. As the human genome project starts to reveal the limits of the current simplistic ‘one gene - one function - one target’ paradigm, the development of conceptual tools to increase our understanding of how the intricate interplay of genes gives rise to a global ‘biological observable’ will open a new perspective for post-genomic drug target discovery.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability analysis of large-scale Boolean networks via compositional method;Automatica;2024-01

2. Stability Analysis of Single-Node Disjunctive Compositional Boolean Networks;2023 42nd Chinese Control Conference (CCC);2023-07-24

3. Target Control of Boolean Networks with Permanent Edgetic Perturbations;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

4. Computing attractors of large-scale asynchronous boolean networks using minimal trap spaces;Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics;2022-08-07

5. Elastic network modeling of cellular networks unveils sensor and effector genes that control information flow;PLOS Computational Biology;2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3