Affiliation:
1. Graduate School of Human Development and Environment Kobe University
Publisher
Faculty of Mathematics, Kyushu University
Reference15 articles.
1. [1] A. Tausz and G. Carlsson. Applications of zigzag persistence to topological data analysis. Preprint, arXiv.1108.3545, 2011.
2. [2] S. Y. Oudot. Persistence Theory: From Quiver Representations to Data Analysis (Mathematical Surveys and Monographs, 209). American Mathematical Society, Providence, RI, 2015.
3. [3] X. Kelin and G.-W. Wei Multidimensional persistence in biomolecular data. J. Comput. Chem. 36 (2015), 1502-1520.
4. [4] J. M. Chan, G. Carlsson, and R. Rabadan. Topology of viral evolution. Proc. Natl. Acad. Sci. USA 110(46) (2013), 18566-18571.
5. [5] Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue, and Y. Nishiura. Amorphous solids and persistent homology. Proc. Natl. Acad. Sci. USA 113(26) (2016), 7035-7040.